Методы решения показательных уравнений
Самые короткие и простые показательные уравнения решаются с помощью элементарной математики. Например:
4х = 64.
Требуется найти, в какую степень нужно возвести 4, чтобы получить 64.
4 × 4 × 4 = 64
43 = 64
Х = 3
Но как решать показательные уравнения вот такого вида: 3√128= 42х? Нужно немного повозиться с преобразованием этого выражения. Например, сделать так, чтобы либо основания, либо степенные показатели стали одинаковы. Для этого мы можем разложить 128 и 4. Вы ведь заметили, что у них есть общий множитель? Правильно, это 2.
3√128= 42х
3√27= (22)2x
27/3 = 24х
Теперь в нашем уравнении появились одинаковые основания, а значит, мы можем приравнять и степени.
4х = 7/3
х = 7/12
В данном случае мы используем один из алгоритмов решения показательных уравнений — привели обе части равенства к одинаковым основаниям. Дальше рассмотрим и другие методы.
Как решать уравнения с дробями
Универсальный алгоритм решения |
---|
|
А теперь еще несколько способов, которые пригодятся ребенку на уроках математики.
1. Метод пропорции
Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.
Итак, у нас есть линейное уравнение с дробями:
В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.
Как решаем:
После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.
2. Метод избавления от дробей
Возьмем то же самое уравнение, но попробуем решить его по-другому.
В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:
- подобрать число, которое можно разделить на каждый из знаменателей без остатка;
- умножить на это число каждый член уравнения.
Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!
Вот так просто мы получили тот же ответ, что и в прошлый раз.
Что еще важно учитывать при решении
если значение переменной обращает знаменатель в 0, значит это неверное значение;
делить и умножать уравнение на 0 нельзя.
А вот и полезные видео для закрепления материала:
- уравнения с дробями 5 класс;
- уравнения с дробями 6 класс;
- уравнения с дробями 7 класс;
Учет ОДЗ
Помнишь, что такое ОДЗ?
Например, в уравнении \( \displaystyle \sqrt{x+2}=3\) присутствует квадратный корень. А квадратный корень не имеет смысла, если подкоренное выражение отрицательно. То есть, в данном случае ОДЗ – это решения неравенства \( \displaystyle x+2\ge 0\).
Нет необходимости искать ОДЗ в каждой задаче, содержащей корень.
Взять, например, задачу из предыдущей главы:
\( \displaystyle \sqrt{{{x}^{2}}+3x}=2\).
При возведении в квадрат получаем \( \displaystyle {{x}^{2}}+3x=4\), то есть подкоренное выражение автоматически неотрицательно! Так зачем лишняя писанина?
Но в некоторых случаях это может быть очень полезно. Более того, иногда можно решить пример, просто найдя ОДЗ!
Простейшие иррациональные уравнения
Начнем с самого простого: уравнения вида \( \displaystyle \sqrt{x}=a\).
Например: \( \displaystyle \sqrt{x}=3\). Как его решить? Как избавиться от корня? Правильно, квадратный корень убирается возведением в квадрат:
\( \displaystyle \sqrt{x}=3\text{ }\Leftrightarrow \text{ }{{\left( \sqrt{x} \right)}^{2}}={{3}^{2}}\text{ }\Leftrightarrow \text{ }x=9\).
А как решить такое: \( \displaystyle \sqrt{x}=3\)?
И снова вспомним определение корня степени \( \displaystyle n\): \( \displaystyle \sqrt{x}\) – это такое число, которое нужно возвести в степень \( \displaystyle n\), чтобы получить \( \displaystyle x\). В данном случае эта степень равна \( \displaystyle 3\):
Итак, общее правило:
Хорошо, а что с этим: \( \displaystyle \sqrt{{{x}^{2}}}=4\)? Все просто: квадрат и корень уничтожаются, и получаем \( \displaystyle x=4\), верно?
Нет! Когда мы проходили корни, на это обращали особое внимание: здесь два корня – \( \displaystyle x=4\) и \( \displaystyle x=-4\), ведь \( \displaystyle \sqrt{{{\left( -4 \right)}^{2}}}=\sqrt{16}=4\). Не забываем правило:
Не забываем правило:
Реши сам:
Замена переменной
Этот способ решения показательных уравнений понадобится тем, кто не боится по-настоящему трудных задач. Ведь с помощью ввода новой переменной можно упростить даже самое сложное выражение. Его суть проста: мы заменяем «трудную» переменную на более простую и решаем уравнение, а после производим обратную замену. Главное — определить, какую именно переменную стоит заменить.
Пример
4x- 2x+1- 8 = 0
Очевидно, что в этом уравнении показательные функции легко привести к общему основанию: 4х = 22х, а 2х+1 = 2 × 2х.
22х – 2 × 2х – 8 = 0
Что-то напоминает. Если бы из этого выражения можно было волшебным образом убрать 2х, получилось бы обычное квадратное уравнение. Поэтому мы обозначим 2х новой переменной — допустим, y.
Если 2х = y, получается: у2- 2у – 8 = 0.
У такого уравнения есть два корня: у1 = 4, у2 = -2.
Проведем обратную замену: 2х = 4, 2х = -2.
Но мы знаем, что показательная функция в любом случае не может быть отрицательным числом, а значит, 2х = -2 корней не имеет. Следовательно, 2х = 4.
х = 2.
Пример 2
25х – 6 × 5х + 5 = 0
Если присмотреться к этому выражению, становится понятно, что у него много общего с квадратным уравнением. Введем новую переменную: 5х = у.
у2 – 6у + 5 = 0
Корни такого уравнения: 1 и 5.
Выполним обратную замену:
5х = 1, значит х = 0.
5х = 5, значит х = 1.
Разница между квадратным корнем и арифметическим квадратным уравнением
Прежде всего, чтобы разграничить эти два понятия, запомните:
x2 = 16 не равно x = √16.
Это два нетождественных друг другу выражения.
- x2 = 16 — это квадратное уравнение.
- x = √ 16 — арифметический квадратный корень.
Из выражения x2 = 16 следует, что:
|x| = √16, это значит, что x = ±√16 = ±4, x1 = 4, x2 = -4.
Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.
В то же самое время, из выражения x = √16 следует, что x = 4.
Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:
- Пример решен неверно
- Это квадратное уравнение.
Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.
Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.
Даны два выражения:
- x2 = 36
- x = √36
Первое выражение — квадратное уравнение.
|x| = √36
x1 = +6
x2 = -6.
Второе выражение — арифметический квадратный корень.
√36 = 6
x = 6.
Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.
Вынесение множителя из-под знака корня
С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.
Дано выражение в виде квадратного корня из произведения.
Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.
Извлекаем корень из всех имеющихся множителей.
В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:
Таким образом множитель выносится из-под знака корня.
Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.
- √28
Раскладываем подкоренное выражение на множители 28 = 7*4.
Извлекаем корень из 4. Множитель 7 оставляем под знаком корня. Ответ: по правилу извлечения квадратного корня из произведения,
Так как вынесенный множитель должен стоять перед подкоренным знаком, то меняем их местами.- Вынесите множитель из-под знака корня в выражении: √24
Ответ: Раскладываем выражение под корнем на множители 24 = 6 * 4. - Упростите выражение:
Вынесем в двух последних выражения множитель из-под знака корня.
Умножаем (-4 * 4) = -16. Все остальное выражение записываем в неизменном виде.
Мы видим, что во всем выражении есть один общий множитель — √5.
Выносим общий множитель за скобки:
Далее вычисляем все, что в скобках:
Решение дробно-рациональных уравнений
До этого мы рассматривали только целые ур-ния, где переменная НЕ находится в знаменателе какого-нибудь выражения. Однако, если в ур-нии есть выр-ние, содержащее переменную в знаменателе, или присутствует деление на выр-ние с переменной, то его называют дробно-рациональным уравнением.
Приведем несколько примеров ур-ний, считающихся дробно-рациональными:
С помощью равносильных преобразований любое дробно-рациональное ур-ние возможно записать в виде отношения двух полиномов:
Дробь равна нулю лишь тогда, когда ее числитель равен нулю, а знаменатель – не равен. Таким образом, нужно сначала решить ур-ние Р(х) = 0 и потом проверить, что полученные корни не обращают полином Q(x) в ноль.
Обычно для решения дробно-рациональных уравнений используют такой алгоритм:
1) Приводят все дроби к единому знаменателю, умножают на него ур-ние и получают целое ур-ние.
2) Решают полученное целое ур-ние.
3) Исключают из числа корней те, которые обращают знаменатель хотя бы одной из дробей в ноль.
Пример. Решите ур-ние
Решение.
Умножим обе части равенства на знаменатель 1-ой дроби:
2х2 – 3х – 2 = х2(х – 2)
Раскроем скобки и перенесем все слагаемые в одну сторону:
2х2 – 3х – 2 = х3– 2х2
х3 – 2х2 – 2х2 + 3х + 2 = 0
х3 – 4х2 + 3х + 2 = 0
У ур-ния могут быть только те целые корни, которые являются делителями двойки. Из кандидатов 1, – 1, 2 и – 2 подходит только двойка:
23 – 4•22 + 3•2 + 2 = 8 – 16 + 6 + 2 = 0
Нашли один корень, а потому исходный многочлен можно поделить в столбик на (х – 2):
Получили, что х3 – 4х2 + 3х + 2 = (х – 2)(х2 – 2х – 1)
Тогда ур-ние примет вид:
(х – 2)(х2 – 2х – 1) = 0
х – 2 = 0 или х2 – 2х – 1 = 0
Решим квадратное ур-ние:
D =b2 – 4ас = (– 2)2 – 4•1•(– 1) = 4 + 4 = 8
Мы нашли все 3 корня кубического ур-ния. Теперь надо проверить, не обращают ли какие-нибудь из них знаменатели дроби в исходном ур-нии
в ноль. Очевидно, что при х = 2 знаменатель (х – 2) превратится в ноль:
х – 2 = 2 – 2 = 0
Это значит, что этот корень надо исключить из списка решений. Такой корень называют посторонним корнем ур-ния.
Также ясно, что два остальных корня не обращают знаменатель в ноль, а потому они НЕ должны быть исключены из ответа:
Пример. Найдите все корни ур-ния
Решение. Если сразу привести выражение слева к общему знаменателю 4(х2 + х – 2)(х2 + х – 20), то получится очень длинное и неудобное выражение. Однако знаменатели довольно схожи, поэтому можно провести замену. Обозначим х2 + х как у:
у = х2 + х
Тогда уравнение примет вид
Приведем дроби к общему знаменателю 4(у – 2)(у – 20):
Знаменатель должен равняться нулю:
4(у – 20) + 28(у – 2) + (у – 2)(у – 20) = 0
4у – 80 + 28у – 56 + у2 – 20у – 2у + 40 = 0
у2 + 10у – 96 = 0
Решаем квадратное ур-ние:
D =b2 – 4ас = (10)2 – 4•1•(– 96) = 100 + 384 = 484
Получили, что у1 = – 16, а у2 = 6. Произведем обратную замену:
у = х2 + х
х2 + х = – 16 или х2 + х = 6
х2 + х + 16 = 0 или х2 + х – 6 = 0
Дискриминант 1-ого ур-ния отрицателен:
D =b2 – 4ас = (1)2 – 4•1•(16) = 1– 64 = – 63
А потому оно не имеет решений. Решим 2-ое ур-ние:
D = b2 – 4ас = (1)2 – 4•1•(– 6) = 1+ 24 = 25
Нашли два корня: 2 и (– 3). Осталось проверить, не обращают ли они знаменатели дробей в ур-нии
в ноль. Подстановкой можно убедиться, что не обращают.
Ответ: – 3 и 2.
При решении дробно-рациональных ур-ний может использоваться и графический метод.
Пример. Сколько корней имеет уравнение
Решение. Построим графики функций у = х2 – 4 и у = 2/х:
Видно, что графики пересекаются в 3 точках, поэтому ур-ние имеет 3 корня.
Ответ: 3 корня.
Решение неполных квадратных уравнений
Как мы уже знаем, есть три вида неполных квадратных уравнений:
- ax2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
- ax2 + c = 0, при b = 0;
- ax2 + bx = 0, при c = 0.
Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.
Как решить уравнение ax2 = 0
Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax2 = 0.
Уравнение ax2 = 0 равносильно x2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x2 = 0 является нуль, так как 02 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.
Таким образом, неполное квадратное уравнение ax2 = 0 имеет единственный корень x = 0.
Пример 1. Решить −6×2 = 0.
Как решаем:
- Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
- По шагам решение выглядит так:
−6×2 = 0
x2 = 0
x = √0
x = 0
Ответ: 0.
Как решить уравнение ax2 + с = 0
Обратим внимание на неполные квадратные уравнения вида ax2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный
Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.
Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax2 + c = 0:
- перенесем c в правую часть: ax2 = – c,
- разделим обе части на a: x2 = – c/а.
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.
Если — c/а < 0, то уравнение x2 = – c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а < 0 ни для какого числа p равенство р2 = – c/а не является верным.
Если — c/а > 0, то корни уравнения x2 = – c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)2 = – c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)2 = – c/а. Ура, больше у этого уравнения нет корней.
В двух словах |
---|
Неполное квадратное уравнение ax2 + c = 0 равносильно уравнению ax2 + c = 0, которое:
|
Пример 1. Найти решение уравнения 8×2 + 5 = 0.
Как решать:
- Перенесем свободный член в правую часть:
8×2 = – 5
- Разделим обе части на 8:
x2 = – 5/8
- В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
Ответ: уравнение 8×2 + 5 = 0 не имеет корней.
Как решить уравнение ax2 + bx = 0
Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.
Неполное квадратное уравнение ax2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:
Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.
Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.
Таким образом, неполное квадратное уравнение ax2 + bx = 0 имеет два корня:
- x = 0;
- x = −b/a.
Пример 1. Решить уравнение 0,5×2 + 0,125x = 0
Как решать:
Вынести х за скобки
х(0,5x + 0,125) = 0
- Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
- Решить линейное уравнение:
0,5x = 0,125,
х = 0,125/0,5 - Разделить:
х = 0,25
- Значит корни исходного уравнения — 0 и 0,25.
Ответ: х = 0 и х = 0,25.
Извлечение корней из больших чисел
До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!
Можно было пойти по иному пути и разложить на другие множители:
Что дальше? А дальше раскладываем на множители до самого конца:
Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.
Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:
Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:
А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):
Разве это конец? Не останавливаемся на полпути!
На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:
Вот и все, не так все и страшно, правда?
Получилось \( \displaystyle 90\)? Молодец, все верно!
А теперь попробуй вот такой пример решить:
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство. |
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Что такое арифметический квадратный корень
А почему же число \( a\) (число под корнем) должно быть обязательно неотрицательным?
Например, чему равен \( \sqrt{-9}\)?
Так-так, попробуем подобрать. Может, три?
Проверим: \( {{3}^{2}}=9\), а не \( -9\).
Может, \( \left( -3 \right)\)?
Опять же, проверяем: \( {{\left( -3 \right)}^{2}}=9\).
Ну что же, не подбирается?
Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число! Это надо запомнить!
Однако ты наверняка уже заметил, что не только число под корнем должно быть неотрицательным, но и само значение тоже должно быть неотрицательным!
Ведь в определении сказано, что «квадратным корнем из числа\( a\)называется такое неотрицательное число, квадрат которого равен\( a\)».
Но подождите! В самом начале мы разбирали пример \( {{x}^{2}}=4\) и один из ответов был отрицательным числом!
Мы подбирали числа, которые можно возвести в квадрат и получить при этом \( \displaystyle 4\). Ответом были \( \displaystyle 2\) и \( \displaystyle -2\)
А тут говорится, что квадратным корнем должно быть «неотрицательное число»! Почему?
Такой вопрос вполне уместен. Здесь необходимо просто разграничить понятия квадратного уравнения и арифметического квадратного корня.
К примеру, \( \displaystyle {{x}^{2}}=4\) (квадратное уравнение) не равносильно выражению \( x=\sqrt{4}\) (арифмитический квадратный корень).
Из \( {{x}^{2}}=4\) следует, что
\( \left| x \right|=\sqrt{4}\), то есть \( x=\pm \sqrt{4}=\pm 2\) или \( {{x}_{1}}=2\); \( {{x}_{2}}=-2\)
(не помнишь почему так? Почитай тему «Модуль числа»!)
А из \( x=\sqrt{4}\) следует, что \( x=2\).
Конечно, это очень путает, но это необходимо запомнить, что знаки «плюс-минус» являются результатом решения квадратного уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.
В наше квадратное уравнение подходит как \( 2\), так и \( x=-2\).
Приведение к одинаковому основанию
Весомую часть уравнений вида ах = b (при а и b 0) можно решить, превратив b в определенную степень числа a. Именно это мы сделали в примере выше, получив одинаковые основания. Главная трудность в том, чтобы найти у этих чисел общий множитель.
Если у нас есть одинаковые основания, но разные показатели степени, то при умножении чисел степени складываются, а при делении — вычитаются. |
Пример 1
Рассмотрим еще одно показательное уравнение с корнем.
(1/642)-х = √1/8
Мы знаем, что у 64 и 8 есть общий множитель — это 2. Попробуем использовать это, и тогда 642 = 212, а 8 = 23.
(1/212)-х = √1/23
1/2-12х = 1/22/3
(1/2)-12х = (1/2)3/2
-12х = 3/2
х = -1/8
Пример 2
В этом примере показательного уравнения нужно будет отдельно преобразовать каждую составляющую.
(0,5)х2 × 4х+1 = 64-1
Найдем общее основание показательных функций:
0,5 = 1/2 = 2-1
4 = 22
64 = 26
В результате у нас получается:
(2-1)х2 × (22)х+1 = (26)-1
2-х2 × 22х+2 = 2-6
2-х2+2х+2 = 2-6
-х2 + 2х + 2 = -6
х2- 2х – 8 = 0
Здесь у нас будет два корня: -2 и 4.
Правила уменьшения или увеличения уравнения в несколько раз.
Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.
Рассмотрим пример:
Решите уравнение 5x=20.
Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.
5x=20
5x:5=20:5
5:5x=4
1x=4 или x=4
Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅4=20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.
Рассмотрим следующий пример:
Найдите корни уравнения .
Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.
1x=21 или x=21
Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.
7=7 получено верное равенство.
Ответ: корень уравнения равен x=21.
Следующий пример:
Найдите корни уравнения
Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.
3x=45
Далее делим все уравнение на 3.
3x:3=45:3
(3:3)x=15
1x=15 или x=15
Сделаем проверку. Подставим в уравнение найденный корень.
5=5
Ответ: x=15
История и формулировки
Кубические уравнения составлялись ещё в Древней Греции и Египте. Археологами были найдены клинописные таблицы XVI века до нашей эры, содержащие описание возможного их решения. Вычислением кубов занимался Гиппократ, пытавшийся свести задачу к нахождению отрезков с помощью чертёжных инструментов. Архимед использовал для поиска ответа пересечение двух конусов.
Впервые методы решения такого рода уравнений были описаны в китайском учебнике «Математика в девяти книгах», составленном во втором столетии до нашей эры. В седьмом веке Омар Хайям на основании своих работ приходит к выводу, что решение уравнений третьей степени может иметь более одного ответа.
Математик Шараф ад-Дин публикует тракт об уравнениях, в котором описывает восемь различных типов кубических выражений, имеющих положительное решение. В своих вычислениях он использует численную аппроксимацию
Учёный не только разработал подход для решения с использованием производной функции и экстремумов, но и понял важность дискриминанта многочлена при нахождении кубов
В 1530 году итальянский математик Никколо Тарталья разрабатывает методику решения, которой он после поделился с Джероламо Кардано. Согласно этому способу нужно было извлекать квадратный корень из отрицательного числа. Параллельно с этими исследованиями, основоположник символической алгебры Франсуа Виет, предлагает свой способ решения кубического равенства с тремя корнями. Позднее его работу описал и обосновал Рене Декарт.
Уравнением третьей степени называют выражение вида: a*y 3 + d*y 2 + c*y + n = 0. В математике оно называется кососимметрическим. Число y, значение которого необходимо найти, при подстановке превращает формулу в тождество. Называется оно корнем уравнения или просто решением. Кроме этого, y ещё является и корнем многочлена куба.