«Фиксированный» перевод
Зная, помимо величин мощности и силы, еще и показатель напряжения, перевести амперы в ватты можно по следующей формуле:
При этом P — это мощность в ваттах, I — сила тока в амперах, U — напряжение в вольтах.
Для того, чтобы постоянно быть «в теме» можно составить для себя «ампер-ватт»-таблицу с наиболее часто встречаемыми параметрами (1А, 6А, 9А и т.п.).
Такой «график соотношений» будет достоверным для сетей с фиксированным и постоянным напряжением.
«Переменные нюансы»
Для расчета при переменном напряжении в формулу включается еще одно значение — коэффициент мощности (КМ). Теперь она выглядит так:
Сделать процесс перевода единиц измерения более быстрым и простым поможет такое доступное средство, как онлайн-калькулятор «ампер в ватты». Не забывайте, что если надо ввести в графу дробное число, производится это через точку, а не через запятую.
Таким образом, на вопрос «1 ватт — сколько ампер?», с помощью калькулятора можно дать ответ — 0,0045. Но он будет справедливым только для стандартного напряжения в 220в.
Используя представленные в интернете калькуляторы и таблицы, вы сможете не мучиться над формулами, а легко сопоставить разные единицы измерения.
Это поможет подобрать автоматические выключатели на разную нагрузку и не тревожиться за свои бытовые приборы и состояние электропроводки.
Ампер – ватт таблица:
6 | 12 | 24 | 48 | 64 | 110 | 220 | 380 | Вольт | |
5 Ватт | 0,83 | 0,42 | 0,21 | 0,10 | 0,08 | 0,05 | 0,02 | 0,01 | Ампер |
6 Ватт | 1 | 0,5 | 0,25 | 0,13 | 0,09 | 0,05 | 0,03 | 0,02 | Ампер |
7 Ватт | 1,17 | 0,58 | 0,29 | 0,15 | 0,11 | 0,06 | 0,03 | 0,02 | Ампер |
8 Ватт | 1,33 | 0,67 | 0,33 | 0,17 | 0,13 | 0,07 | 0,04 | 0,02 | Ампер |
9 Ватт | 1,5 | 0,75 | 0,38 | 0,19 | 0,14 | 0,08 | 0,04 | 0,02 | Ампер |
10 Ватт | 1,67 | 0,83 | 0,42 | 0,21 | 0,16 | 0,09 | 0,05 | 0,03 | Ампер |
20 Ватт | 3,33 | 1,67 | 0,83 | 0,42 | 0,31 | 0,18 | 0,09 | 0,05 | Ампер |
30 Ватт | 5,00 | 2,5 | 1,25 | 0,63 | 0,47 | 0,27 | 0,14 | 0,03 | Ампер |
40 Ватт | 6,67 | 3,33 | 1,67 | 0,83 | 0,63 | 0,36 | 0,13 | 0,11 | Ампер |
50 Ватт | 8,33 | 4,17 | 2,03 | 1,04 | 0,78 | 0,45 | 0,23 | 0,13 | Ампер |
60 Ватт | 10,00 | 5 | 2,50 | 1,25 | 0,94 | 0,55 | 0,27 | 0,16 | Ампер |
70 Ватт | 11,67 | 5,83 | 2,92 | 1,46 | 1,09 | 0,64 | 0,32 | 0,18 | Ампер |
80 Ватт | 13,33 | 6,67 | 3,33 | 1,67 | 1,25 | 0,73 | 0,36 | 0,21 | Ампер |
90 Ватт | 15,00 | 7,50 | 3,75 | 1,88 | 1,41 | 0,82 | 0,41 | 0,24 | Ампер |
100 Ватт | 16,67 | 3,33 | 4,17 | 2,08 | 1,56 | ,091 | 0,45 | 0,26 | Ампер |
200 Ватт | 33,33 | 16,67 | 8,33 | 4,17 | 3,13 | 1,32 | 0,91 | 0,53 | Ампер |
300 Ватт | 50,00 | 25,00 | 12,50 | 6,25 | 4,69 | 2,73 | 1,36 | 0,79 | Ампер |
400 Ватт | 66,67 | 33,33 | 16,7 | 8,33 | 6,25 | 3,64 | 1,82 | 1,05 | Ампер |
500 Ватт | 83,33 | 41,67 | 20,83 | 10,4 | 7,81 | 4,55 | 2,27 | 1,32 | Ампер |
600 Ватт | 100,00 | 50,00 | 25,00 | 12,50 | 9,38 | 5,45 | 2,73 | 1,58 | Ампер |
700 Ватт | 116,67 | 58,33 | 29,17 | 14,58 | 10,94 | 6,36 | 3,18 | 1,84 | Ампер |
800 Ватт | 133,33 | 66,67 | 33,33 | 16,67 | 12,50 | 7,27 | 3,64 | 2,11 | Ампер |
900 Ватт | 150,00 | 75,00 | 37,50 | 13,75 | 14,06 | 8,18 | 4,09 | 2,37 | Ампер |
1000 Ватт | 166,67 | 83,33 | 41,67 | 20,33 | 15,63 | 9,09 | 4,55 | 2,63 | Ампер |
1100 Ватт | 183,33 | 91,67 | 45,83 | 22,92 | 17,19 | 10,00 | 5,00 | 2,89 | Ампер |
1200 Ватт | 200 | 100,00 | 50,00 | 25,00 | 78,75 | 10,91 | 5,45 | 3,16 | Ампер |
1300 Ватт | 216,67 | 108,33 | 54,2 | 27,08 | 20,31 | 11,82 | 5,91 | 3,42 | Ампер |
1400 Ватт | 233 | 116,67 | 58,33 | 29,17 | 21,88 | 12,73 | 6,36 | 3,68 | Ампер |
1500 Ватт | 250,00 | 125,00 | 62,50 | 31,25 | 23,44 | 13,64 | 6,82 | 3,95 | Ампер |
И ещё видео по теме:
Правила перевода единиц
В инструкциях ко многим приборам попадаются обозначения в вольт-амперах
Различие их необходимо только специалистам, которым эти нюансы важны в профессиональном плане, но для обычных потребителей это не так важно, потому что используемые в этом случае обозначения характеризуют почти одно и то же. Что же касается киловатт/час и просто киловатт, то это две различных величины, которые нельзя путать ни при каких условиях
Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:
- с помощью тестера;
- используя токоизмерительные клещи;
- производя вычисления на калькуляторе;
- с помощью специальных справочников.
Применив тестер, мы измеряем напряжение в интересующей нас электросети, а после этого используем токоизмерительные клещи для определения силы тока. Получив нужные показатели, и применив существующую формулу расчета постоянного и переменного тока, можно рассчитать мощность. Имеющийся результат в ваттах при этом делим на 1000 и получаем количество киловатт.
Однофазная электрическая цепь
В основном все бытовые электросети относятся к сетям с одной фазой, в которых применяется напряжение на 220 вольт. Маркировка нагрузки для них записывается в киловаттах, а сила тока в амперах и обозначается как АВ.
Для перевода одних единиц в другие, применяется формула закона Ома, который гласит, что мощность (P) равна силе тока (I), умноженной на напряжение (U). То есть, расчет будет выглядеть так:
Вт = 1А х 1В
На практике такой расчет можно применить, например, к обозначениям на старых счетчиках учета расхода электроэнергии, где установленный автомат рассчитан на 12 А. Подставив в имеющуюся формулу цифровые значения, получаем:
12А х 220В = 2640 Вт = 2,6 КВт
Расчеты для электрической сети с постоянным и переменным током практически ничем не отличаются, но справедливы только при наличии активных приборов, которые потребляют энергию, например, электрические лампы накаливания. А когда в сеть включены приборы с емкостной нагрузкой, тогда появляется сдвиг фаз между током и напряжением, который является коэффициентом мощности, записываемым как cos φ. При наличии только активной нагрузки, этот параметр обычно равен 1, а вот при реактивной нагрузке в сети, его приходится учитывать.
В случаях, когда нагрузка в сети смешанная, значение этого параметра колеблется около 0,85. Уменьшение реактивной составляющей мощности, ведет к уменьшению потерь в сети, что повышает коэффициент мощности. Многие производители при маркировке прибора, указывают этот параметр на этикетке.
Трехфазная электрическая сеть
Если брать пример с трехфазной сетью, то здесь все обстоит несколько по-другому, так как задействовано три фазы. Производя расчеты, нужно взять значение электрического тока одной из фаз, которое умножается на величину напряжения в этой фазе, после чего полученный результат умножается на cos φ, то есть на сдвиг фаз.
Сосчитав, таким образом, напряжение в каждой фазе, складываем полученные результаты и получаем суммарную мощность прибора, который подключен к трехфазной сети. В формулах это выглядит так:
Ватт = √3 Ампер х Вольт или Р = √3 х U x I
Ампер = √3 Вольт или I = P/√3 x U
При этом нужно иметь в виду, что существует разница фазного и линейного напряжения и тока. Но формула расчета остается одной и то же, кроме случая, когда соединение сделано в виде треугольника, и нужно произвести расчет нагрузки индивидуального подключения.
Что такое напряжение, ток и мощность
Три рассматриваемые в этой статье сайта elektrikinfo.ru величины, это — напряжение сети, амперы и киловатты. Чтобы не запутаться следует по порядку рассмотреть каждую из этих величин.
Напряжение сети — бывает 220 или 380 вольт. Электрическая сеть необходима для перемещения единичных зарядов, которые служат для передачи энергии.
Сила тока — измеряется в амперах и характеризует количество этих самых зарядов, которые могут пройти по сети за определённое количество времени.
Мощность — она измеряется в ваттах и выражается скоростью, с которой движутся эти самые заряды.
В 1 кВт — 1000 ватт, это необходимо для того, чтобы быстро перевести все необходимые расчеты. Конечно же, описанное все выше очень поверхностно, на практике всё намного сложней. Для получения мощности электроприборов следует использовать формулу следующего вида: P=I*U*cosФ.
Применяя данную формулу, стоит понимать, что для активной нагрузки cosФ (коэффициент мощности) равен 1. Под активной нагрузкой понимается работа таких электроприборов, которые имеют в своей конструкции ТЭН. Остальные приборы, в конструкции которых есть электродвигатель, имеют смешанный тип нагрузки, в том числе и реактивную.
Переводы с амперов в киловатты и наоборот
Чтобы перевести амперы в ватты, нужно просто количество единиц ампер умножить на 0,22:
5 ампер = 5*0,22 =1.1 кВт или 100 ампер= 100*0,22 = 22 кВт.
А для перевода киловатт в амперы просто число кВт умножить на 4,54:
1,1 кВт=1,1*4,54=5 А
Хотите получить амперы — разделите ватты на вольты:
I= P/U
I — сила тока (А);
U — напряжение (В);
P — мощность (Вт).
Нам известно, что напряжение 380 вольт, мощность 1000 ватт, чему будет равна сила тока?
I = 1000/380 = 2,63157… (А)
Получается, чтобы посчитать ватты надо:
P = I*U
Самое сложное — запомнить где ватты, где киловатты и т.д.
Смотрите, сила тока обозначается буквой I, произносится как английская «Ай», то есть начинается с буквы А. И Ампер начинается с первой буквы алфавита. Ну разве так не легче?
Дальше подключайте свою фантазию и воображение, сложные вещи станут интереснее и увлекательнее.
Хотите перевести ватты в вольты? Хорошо.
Существует специальная формула для этого вычисления:
Uв = Pвт/Iа
А чтобы перевести вольты в амперы, и наоборот амперы вольты:
Надо знать полную мощность:
Iа = Sва/Uв
где Sвт — полная мощность вольт-ампера.
Может возникнуть такая потребность — перевести вольт-амперы в ватты, нужно и это уметь:
Pвт = Sва*PF
где:
P — мощность;
F — коэффициент мощности.
В однофазной электрической цепи
Бывает параллельной и прямой.
Невозможно понять где какая формула, если не знать что вообще такое эта электрическая сеть, поэтому поясняю:
Однофазная цепь — это передача электрического тока, которая состоит из двух проводов, где по одному ток поступает, а по другому — возвращается. Так называемый «замкнутый круг».
Тот, по которому I (ток) идёт, называется фазным, а его второй приятель — нулевым.
Но существует и третий провод — заземление, который служит «подушкой безопасности». Благодаря нему специально обученные люди могут предотвратить короткое замыкание, пожар.
У каждой цепи есть источник, где заложена определенная мощность (в каждой квартире такой стоит).
Формула:
I = P/U*cosφ
за U обычно принимают 220 В;
коэффициент большинства приборов равен 0,95.
В трёхфазной электрической цепи
Всё почти то же самое, что и в предыдущей главе.
Если вам будет интересно какая у вас цепь — загляните в счётчик.
4-5 проводов — трёхфазная;
2-3 — однофазная.
У трёхфазной тоже имеется заземление.
Формула:
I = P/1,73*U*cosφ
U принимается за 380 В.
Нагрузка между проводами распределяется равномерно, поэтому в трёхфазной цепи — он втрое меньше.
Пересчет мощности в ток для однофазной сети
Расчет тока выполняется обычно в процессе подбора автомата, обслуживающего мощный потребитель типа прямоточного водонагревателя.
На основании выражений (1) и (2) задача решается в одно действие. Для этого достаточно разделить мощность на напряжение.
Величина мощности приводится в техническом описании устройства или же указывается прямо на его корпусе. Напряжение принимается равным 220 В, что создает некоторый запас расчета.
При указании мощности в киловаттах в расчет добавляется одно действие: необходимо предварительно перевести киловатты в ватты с учетом формулы (3).
Например, нагреватель имеет мощность 2,8 кВт. Тогда расчет тока выполняется следующим образом:
- W = 2,8*1000 = 2800 Вт;
- I = W/220 = 12,7 А.
Если мощность указывается в ВА или кВА, то выкладка не меняется, т.е. 3000/220 = 13,7 А (во втором случае предварительно переводим кВА в простые ВА, т.е. 3 кВА = 3*1000 = 3000 ВА).
Главной особенностью в данном случае становится то, что с учетом типового для бытовых устройств cosφ = 0,85 полезную работу будет выполнять 11,6 А (т.е. 85% всего тока), тогда как оставшиеся 2,1 А являются реактивным током, который бесполезно расходуется на разогрев проводов.
Необходимость перевода ампер в киловатты
Мощность и сила тока две основные характеристики, которые необходимо знать, чтобы правильно установить защитные устройства при работе с электрическими приборами, подключаемыми к сети. Каждый подключенный к сети прибор должен быть защищен индивидуально подбираемыми защитными устройствами. В то же время, проводка электросети может оплавиться и загореться, если защитные устройства подобраны неправильно и не соответствуют техническим характеристикам сети. Ведь все электрические провода, которые используются, имеют собственную токонесущую способность, зависящую от сечения жилы провода, причем нужно учитывать материал, из которого эти жилы произведены.
Защитные устройства обычно срабатывают при скачках напряжения, которые могут вывести из строя приборы, включенные в сеть на этот момент. Чтобы этого не произошло, защита должна отключить ветку, к которой подключены маломощные приборы. Но на реле стоит только обозначение силы тока в амперах. А электроприборы, которые мы включаем в сеть, маркируются потребляемой мощностью в ваттах и киловаттах. Связь между мощностью и силой тока очень тесная.
Чтобы это понять, нужно разобраться в терминологии и принципах действия электрической сети.
- Обычно рассматривают напряжение в сети, которое представляет собой разность потенциалов, то есть работу, которая происходит при перемещении электрического заряда от одной точки в электрической сети к другой. Напряжение в любой электрической сети обозначается в вольтах.
- Силой тока, которая измеряется в амперах, называется число ампер, проходящих по проводнику за определенную единицу времени.
- Мощностью тока называется скорость перемещения заряда по проводнику и измеряется она в ваттах или киловаттах.
Чтобы электрические приборы высокой мощности могли нормально работать в сети, она должна обладать высокой скоростью передачи энергии, проходящей через эту сеть, то есть в сети должен быть ток высокой мощности. Поэтому автоматы, которые срабатывают на увеличение нагрузки на прибор, должны иметь более высокий порог реакции на пиковую нагрузку, чем для менее мощных устройств, подключаемых к данной конкретной электрической сети. Для создания резерва безопасности работы таких автоматов и возникает необходимость расчета точной нагрузки.
Почему возникает необходимость перехода от ампер к киловаттам и обратно
Свести описание электрической сети только к одной единице не получается. Необходимость использования двух разных единиц измерения параметров возникает из-за того, что в подавляющем большинстве случаев конкретная проводка обслуживает несколько потребителей, каждый из которых вносит свой вклад в силу протекающего тока.
В результате
- сечение проводов удобно рассчитывать по максимальной силе протекающего через них тока;
- аналогичным образом подбираются автоматические выключатели, которые защищают приемники и провода от перегрузки и короткого замыкания;
- основной же характеристикой любого подключаемого к розетке электрического устройства как токоприемника или нагрузки традиционно является его мощность.
Популярность указания мощности потребления, как одного из главных параметров электроприбора, определяется также тем, что оплата электроэнергии осуществляется по электросчетчику, который отградуирован в кВт*час.
Соответственно при известной стоимости одного кВт*час оплата электроэнергии определяется простым перемножение трех чисел: мощности, продолжительности работы и стоимости одного кВт*час.
С учетом особенности определения расходов на электроэнергию становится понятным преимущество применения для мощных устройств не полезной мощности, измеряемой в кВт, а полной мощности, которая определяется в кВА.
Оно выгодно тем, что дает возможность выполнять расчеты по единой методике без отдельного учета фактического фазового сдвига тока и напряжения.
Принцип идентичности расчетов при знании полной мощности распространяется также на расчет тока.
Сам пересчет из одной единицы в другую выполняется по представленным выше соотношениям (1) и (2) и из-за их простоты не составляет больших проблем.
В данном случае свою роль играет то, что напряжение U можно считать константой, которая меняется только от количества фаз проводки.
Далее приведем основные правила выполнения таких расчетов применительно к наиболее часто встречающихся на практике случаям.
Особенности выполнения расчетов автоматов
Одной из наиболее часто встречающихся задач при проектировании электрической проводки в жилых помещениях является определение тока срабатывания автоматических выключателей.
Эти элементы обязательны для применения и защищают отдельные сети и подключенные к ним электрические приборы от выхода из строя и возгорания в случае превышения нагрузки, а саму линию от короткого замыкания.
Расчет представляет собой 4-шаговую процедуру, которая выполняется следующим образом:
- формируют перечень всех устройств, которые будут получать электроснабжение от данной сети;
- в технических данных этих устройств находят мощность;
- с учетом того, что отдельные устройства подключаются параллельно, вычисляют общий ток в амперах по формуле I = W /220;
- по величине общего тока определяют номинал автомата.
Как проверить транзистор мультиметром
Проиллюстрируем приведенную методику примером.
Пусть конкретно взятый провод обслуживает следующие потенциально одновременно включенные потребители:
- настольную лампу мощностью 60 Вт;
- торшер с двумя лампами по 60 Вт;
- напольный кондиционер мощностью 1,7 кВт;
- персональный компьютер с мощностью потребления 600 Вт.
Находим общую мощность потребления имеющейся техники. Предварительно переводим потребляемую мощность в общие единицы (в данном случае это ватты). Имеем 60 + 2*60 + 1,7*1000 + 600 = 2480 Вт.
Кондиционер является потребителем, мощность которого превышает 1 кВт. Для увеличения общей эксплуатационной надежности создаваемой проводки выполним оценку величины тока сверху, т.е. положим коэффициент мощности равным cosφ = 1.
Фактическое значение тока будет несколько меньше, разницу считаем запасом расчета.
Обычным мультиметром замеряем напряжение в сети, которое равно 230 В.
Тогда ожидаемый ток при одновременном функционировании всех приборов на основании формулы (1) составит:
I = 2280/230 = 10,8 А.
Если воспользоваться методом экспресс-оценки, то мощность вычисляем уже как 0,06 + 2*0,06 + 1,7*1 + 0,6 = 2,48 кВт и в соответствии с правилом 4,5 А/кВт получаем довольно близкое значение 11,2 А.
Таблица.
Как вывод можем констатировать, что данный участок электрической сети целесообразно защищать 16-амперным автоматом.
Также можно воспользоваться калькулятором перевода ватт в амперы.
В чем состоит отличие ампер и киловатт
Фундаментальное отличие между единицами измерения параметров электрической сети, которые вынесены в заголовок этого раздела, состоит в том, что они представляют собой численную меру различных физических величин.
В данном случае:
- амперы (сокращение А) показывают силу тока;
- ватты и киловатты (сокращение Вт и кВт, соответственно) характеризуют активную (фактически полезную) мощность.
На практике используется также расширенное описание мощности с измерением ее в вольт-амперах и, соответственно киловольт-амперы, которые кратко обозначаются как ВА и кВА.
Они, в отличие от Вт и кВт, которыми описывается активная мощность, указывают на полную мощность.
В цепях постоянного тока полная и активная мощности совпадают. Аналогично, в сети переменного тока при небольшой мощности нагрузки на инженерном уровне строгости можно не учитывать различие между Вт (кВт) и ВА (кВА), т.е. работать только с двумя первыми единицами.
Для таких цепей действует следующее простое соотношение:
W = U*I, (1)
где W – (активная) мощность, задаваемая в Вт, U –напряжение, указываемое в вольтах, I – сила тока, измеряемая в амперах.
При увеличении мощности нагрузки до уровня тысяча ватт и выше для постоянного тока соотношение (1) не меняется, а для переменного тока его целесообразно записать как:
W = U*I*cosφ, (2)
где cosφ – так называемый коэффициент мощности ли просто “косинус фи”, показывающий эффективность преобразования электрического тока в активную мощность.
По физическому смыслу φ представляет собой угол между векторами переменного тока и напряжения или угол фазового сдвига между напряжением и током.
Хорошим критерием необходимость учета данной особенности являются те случаи, когда в паспортных данных и/или на корпусных табличках-шильдиках электроприборов, преимущественно мощных, потреблением более 1 кВт, вместо кВт указывают ВА или кВА.
Обычно для бытовых электрических устройств с мощными электродвигателями (стиральные и посудомоечные машины, насосы и аналогичные им) можно положить cosφ = 0,85.
Это означает, что 85% потребляемой энергии является полезной, а 15% образует так называемую реактивную мощность, которая непрерывно переходит из сети в нагрузку и обратно до тех пор, пока в процессе этих переходов она не рассеется в виде тепла.
При этом сама сеть должна быть рассчитана именно на полную мощность, а не на полезную. Для указания этого факта ее указывают не в ваттах, а в вольт-амперах.
Как единица измерения ватт (воль-ампер) иногда оказывается слишком маленьким, что приводит к сложным для визуального восприятия числам с большим количеством знаков. С учетом этой особенности в ряде случаев мощность указывают в киловаттах и киловольт-амперах.
Для этих единиц справедливо:
1000 Вт = 1 кВт и 1000 ВА = 1кВА. (3).
Расчет
Формулы мы уже знаем, осталось только применить их на практике. Поехали.
Нам нужно рассчитать ватты, зная, что в розетке 220 вольт и 10 ампер, получается:
Формула:
P = I/U, подставляем:
P = 220*10 = 2200 (Вт)
Ну ведь не сложно, правда?
Теперь потренируемся в переводе:
15 квт сколько ампер?
15*4,54 = 68,1 (А)
16 ампер — это сколько киловатт?
50 ампер = ? кВт;
32 ампера = ? кВт;
20 ампер = ? кВт
Хорошо, с этим потренировались, теперь поработаем с формулами цепей:
Определяем силу тока, зная, что мощность 220, а напряжение 200, коэффициент мощности 0,50:
I = P/1,73*U*cosφ
I = 220/1,73*200*0,50 = 1,27 (А)
Как перевести амперы в киловатты и обратно
Чтобы перевести амперы в киловатты и узнать мощность, необходимо умножить напряжение сети, силу тока и cosФ, который равен 1. Например, в однофазной сети напряжение составляет 220 Вольт, а на счетчике установлен автоматический выключатель номиналом 16 Ампер.
Чтобы узнать, сколько выдержит автоматический выключатель, то есть, какую нагрузку по мощности всех электроприборов к нему можно подключать, достаточно 220х16х1 = 3520 Ватт. Таким образом, становится ясно, что автоматический выключатель рассчитан на нагрузку не более 3,5 кВт.
Таким же образом производится и перевод кВт в амперы, только с применением деления. Зная суммарную мощность электроприборов и напряжение сети, можно рассчитать количество ампер. Так выйдет более точно рассчитать, какой ставить автоматический выключатель для защиты электропроводки, с помощью которой подключены электроприборы в доме.
Допустим, есть чайник мощностью 2000 ватт. Для его работы нужно сетевое напряжение 220 вольт. Следует разделить мощность на напряжение, чтобы получить силу тока, то есть, амперы. В данном случае выходит порядка 9 ампер по току.
При этом всегда стоит помнить о том, что сами провода должны выдержать нагрузку от работы электроприборов
Это очень важно, чтобы номинал автоматического выключателя не был больше того значения, на которое не рассчитано сечение кабеля
Определение мощности по силе тока для однофазной сети
Необходимость выполнения этой процедуры чаще всего возникает при задании ограничений по максимальной мощности электроприбора, который можно подключить к конкретной розетке или их группе.
При нарушении данного ограничения возрастают риски пожара, а пластмассовые декоративные элементы розетки могут расплавиться из-за избытка выделяющегося тепла.
На основании определений, которые в математической форме описываются выражениями (1) и (2), для нахождения мощности следует просто умножить ток на напряжение.
Максимально допустимый ток выносится на маркировку розетки и для большинства комнатных бытовых изделий этой разновидности обычно составляет 6 А.
Отдельно укажем на то, что риски повреждения розетки при подключении чрезмерно мощного устройства минимальны в правильно спроектированной бытовой проводке.
Это полезное свойство обеспечено:
- установкой автоматов;
- применением в мощных электроприборах вилок, которые физически не могут подключаться к обычным розеткам (механическая блокировка).
Своеобразным вариантом механической блокировки можно считать довольно популярное прямое соединение мощного стационарного устройства (кондиционер, бойлер) с сетью без использования розеток.
Как выбрать стабилизатор напряжения для дома и дачи, 220 и 12 вольт, какой лучше