Как читать рентгеновские снимки

Рентген

Наиболее старый и привычный метод визуализации человеческого тела. Применяют рентген повсеместно, от хирургии до стоматологии. Метод прост и понятен: человека облучают особыми лучами, которые легко проходят сквозь мягкие ткани и задерживаются в твёрдых. Благодаря этому принципу, на фотоплёнку или датчик, расположенные на противоположной от источника лучей стороне, передаётся изображение, а в распоряжение врача попадает рентгенография или рентгеноскопия.

Главные плюсы такого обследования: быстрота и стоимость. Рентгеновскими аппаратами оснащены практически все больницы, процедура проходит быстро и стоит недорого.

Главные минусы: облучение и качество изображения. При проведении рентгенографии пациент облучается, а картинка получается двумерной. Врач с трудом может разглядеть внутренние органы по отдельности, поскольку их тени перекрывают друг друга. Также невозможно детально разглядеть хрящевую ткань и мозг. Хрящи практически не задерживает лучи, мозг надёжно закрыт черепной коробкой. Для их исследования рентгенография не подойдёт.

Наиболее эффективно будет проводить рентгенографию при повреждениях костей, суставов и зубов.

Популярные методы лучевой диагностики

На сегодняшний день самым распространенным и востребованным в амбулаторной практике методом лучевого исследования является интраоральная радиография зубов, или внутриротовой снимок зуба. Иногда внутриротовые снимки зубов называют прицельными, что неправильно. Прицельным называется снимок, выполненный вне стандартной укладки, а стандартизированные исследования именуются соответственно методу позиционирования.

На терапевтическом приеме в процессе эндодонтического лечения должно быть сделано не менее трех внутриротовых снимков каждого исследуемого зуба:

  • диагностический снимок необходим для оценки состояния тканей периодонта на момент обследования, постановки диагноза, определения количества и формы корней, направления каналов, выбора тактики лечения.
  • измерительный снимок — снимок зуба на этапе лечения с введенными в каналы эндодонтическими инструментами с фиксированной стоппером длиной рабочей части или верификаторами после инструментальной обработки каналов. Если ортогональная проекция выполнена корректно, при условии точной калибровки программы визиографа и отсутствии проекционного искажения для резцов и премоляров некоторые измерения могут быть проведены по диагностической радиограмме. Для многокорневых зубов предпочтительно измерение длины каналов с помощью эндодонтических инструментов (рис. 1), апекслокатора или по трехмерному снимку.
  • контрольный снимок делается непосредственно после окончания эндодонтического лечения с целью определить, насколько качественно запломбированы корневые каналы, а также через определенное заданное время, дабы удостовериться в отсутствии или выявить наличие осложнений (рис. 2). При исследовании многокорневых зубов и в случаях, когда имеется дополнительный канал, на снимке, выполненном с орторадиальным направлением луча (прямая проекция), корневые каналы часто накладываются друг на друга, что значительно затрудняет диагностику и может привести к ошибке в процессе лечения. Для получения раздельного изображения корневых каналов используется радиография с косым (эксцентрическим) направлением центрального луча (рис. 1). Применительно к каждому конкретному случаю выбирается мезиальный или дистальный наклон (ангуляция) тубуса в горизонтальной плоскости (подробнее см.: Рогацкин Д. В., Гинали Н. В. Искусство рентгенографии зубов, 2007).

В идеале максимум информации о топографии корней и состоянии тканей периодонта может быть получен при проведении полипозиционной радиографии. В данном случае с диагностической целью делается три снимка — один в прямой, с орторадиальным направлением луча, и два в косой проекции — с дистально-эксцентрическим (рис. 1) и мезиально-эксцентрическим направлением луча (соответственно, прямая, задняя косая и передняя косая проекции).

Важнейшими аспектами успешной внутриротовой радиографии являются стандартизация и последовательная коррекция манипуляций. Под стандартизацией манипуляций подразумевается способность специалиста, проводящего лучевое исследование, выбрать оптимальный для каждого случая метод и сделать серию идентичных снимков вне зависимости от положения, состояния пациента и времени, отделяющего одно исследование от другого. То есть, если диагностический или измерительный снимок признан качественным, каждый последующий уточняющий и контрольный должны быть сделаны с теми же пространственными и техническими установками и каждое последующее изображение должно быть идентично предыдущему (рис. 1, 2).

Флюорография

Ещё один тип обследования, которому регулярно все жители нашей страны. Флюорографию “изобрели” почти сто лет назад. Это своего рода ускоренная рентгенография. Учёные предложили фотографировать экран с изображением, полученным при рентгенографии. Это позволило сделать процедуру более быстрой и массовой. Скрининг-тесты начали делать всем, чтобы выявлять скрыто протекающий туберкулёз лёгких.

Главный плюс процедуры — быстрота, главный минус — качество изображения. Пациент также получает дозу облучения, а врач довольно размытую картинку, поэтому флюорографию рекомендуется дополнять анкетированием и лабораторными тестами на наличие туберкулёза.

Что это такое?

Технология лучевой диагностики является практической дисциплиной, изучающей воздействия разных типов излучения на человеческий организм.Ее цель – выявлять скрытые заболевания, путем исследования морфологии и функций здоровых органов, а также имеющих патологии, включая все системы жизнедеятельности человека.

Плюсы и минусы

Преимущества:

  • способность наблюдать работу внутренних органов и систем жизнедеятельности человека;
  • анализировать, делать выводы и подбирать необходимый метод терапии на основе диагностики.

Недостаток: угроза нежелательного радиационного облучения пациента и медицинского персонала.

Сцинтиграфия, ОФЭКТ, ПЭТ

Пожалуй, это одни из самых редких процедур нашего списка. Эти методы обследований основаны на лучевой диагностике, только используется она наоборот. Пациента не облучают снаружи, а вводят ему специальный радиоактивный препарат, чтобы заставить “светиться изнутри”. Сначала учёными была придумана и опробована сцинтиграфия. С её помощью удавалось получить двухмерные изображения. Затем исследования пошли дальше и была изобретена однофотонная эмиссионная компьютерная томография (ОФЭКТ), а вслед за ней и позитронно-эмиссионная томография (ПЭТ). Разница между этими методами скорее техническая, в них используются разные радиофармпрепараты и разные типы детекторов, которые фиксируют излучение из тела пациента.

Возникает вопрос: “Зачем такие сложности?”. Дело в том, что благодаря этим процедурам на снимках можно увидеть образования, которые не видны на снимках, полученных путём внешнего облучения. Метастазы и опухоли могут появляться внутри костей или органов и долгое время не проявляться. Радиофармпрепарат вводится внутрь организма и накапливается в тканях, что позволяет “подсветить” определённые участки.

Основной минус этого метода обследования — стоимость. Радиофармпрепарат разрабатывается индивидуально для каждого пациента, кроме того, пациент получает лучевую нагрузку, да и сама процедура более сложная, нежели те, которые мы описывали ранее. Однако в некоторых случаях без неё не обойтись, например, при онкологических и неврологических заболеваниях, диагностике болезней сердца и щитовидной железы.

Виды и применение рентгеноконтрастных препаратов в лучевой диагностике

В ряде случаев необходимо визуализировать анатомические структуры и органы, неразличимые на обзорных рентгенограммах. Для исследования в такой ситуации применяют метод создания искусственного контраста. Для этого, в область, которую необходимо исследовать, вводят специальное вещество, увеличивающее контрастность области на снимке. Подобного рода вещества имеют способность усиленно поглощать или наоборот уменьшать поглощение рентгеновского излучения.

Контрастные вещества разделяют на препараты:

  • спирторастворимые;
  • жирорастворимые;
  • нерастворимые;
  • водорастворимые неионогенные и ионогенные;
  • с большим атомным весом;
  • с малым атомным весом.

Жирорастворимые рентген контрастные препараты создаются на базе растительных масел и используются в диагностике структуры полых органов:

  • бронхов;
  • позвоночного столба;
  • спинного мозга.

Спирторастворимые вещества применяют для исследования:

  • желчных путей;
  • желчного пузыря;
  • внутричерепных каналов;
  • спинномозговых, каналов;
  • лимфатических сосудов (лимфографии).

Нерастворимые препараты создаются на основе бария. Их используют для перорального введения. Обычно с помощью таких препаратов исследуют составляющие пищеварительной системы. Сульфат бария принимают в виде порошка, водянистой суспензии или пасты.

К веществам с малым атомным весом относят уменьшающие поглощение рентгеновских лучей газообразные препараты. Обычно газы вводят для конкурирования рентгеновских лучей в полости тела или полые органы.

Вещества с большим атомным весом поглощают рентгеновское излучение и делятся на:

  • содержащие йод;
  • не содержащие йод.

Водорастворимые вещества вводят внутривенно для лучевых исследований:

  • лимфатических сосудов;
  • мочевыделительной системы;
  • кровеносных сосудов и др.

Компьютерная томография (КТ)

Компьютерная томография тоже осуществляется по принципу рентгенографии, но в результате врач получает не плоскую двухмерную картинку, а трёхмерное изображение. Это достигается путём одновременного создания большого числа снимков, которые собираются в единое изображение. Датчики компьютерного томографа обладают высокой чувствительностью и различают огромное количество оттенков, поэтому врач может детально рассмотреть все кости и органы пациента. Дополнительно повысить качество изображения можно, если ввести пациенту специальное вещество, так называемый “контраст”. Контраст помогает отличить здоровые ткани от изменённых и обнаружить аномальные структуры в организме, а также даёт возможность детально изучить состояние сосудов. КТ с контрастом назначают не в каждом случае, часто достаточно простой компьютерной томографии.

КТ делается быстро, с его помощью проводить скрининг на рак лёгких. Также можно использовать компьютерную томографию непосредственно во время проведения хирургических операций.

Недостатками КТ можно считать высокую лучевую нагрузку на пациента. Поэтому КТ не назначают беременным женщинам, детям и пациентам с избыточным весом (более 200 килограмм).

Что общего и чем отличаются рентген от флюорографии

Оба метода дают возможность получить только двухмерные снимки за счет рентгеновского излучения, используются для исследования грудной клетки и легочной ткани, их возможности зависят от имеющегося в клинике аппарата.

Чем старее аппаратура, тем больше доза облучения рентгена и флюорографии, хуже качество снимка. На старых аналоговых флюорографах можно получить снимки меньшего размера и качества, чем на рентгеновских. На новых цифровых аппаратах нет разницы между рентгеном и флюорографией при выявлении туберкулеза, пневмонии ни по облучению, ни по качеству снимка.

Есть и отличия в зоне обследования. Флюорографическое исследование позволяет оценить проблемы только в области грудной клетки (его выполняют на специальном аппарате), при рентгенографии исследуются различные части тела, используя стационарные и иногда даже мобильные аппараты.

Если оценивать – что лучше, рентген позволяет выполнить снимки в нестандартных проекциях, с захватом соседних областей. Поэтому, при подозрениях на серьезные патологии, бывает так, что пациента после флюорографии отправляют на рентген.

Чем отличается КТ от рентгена легких?

Компьютерная томография — это современный метод лучевой диагностки различных заболеваний, в основе которого лежит рентгенография. . Метод был разработан и предложен учеными, лауреатами Нобелевской премии Г. Хаунсфилдом и А. Кормаком в 1972 году. Классическая рентгенография была изобретена в 1896 году, чаще всего она применялась в стоматологии и для исследования легких, поскольку на рубеже XIX-XX вв. смертность от пневмонии, туберкулеза и астмы была крайне велика.

Сканы КТ отличаются более высокой четкостью изображений и информативностью. В ходе компьютерной томографии рентгеновская трубка вместе с чувствительными датчиками совершает несколько оборотов по спиральной траектории, сканируя исследуемую область. Аппарат КТ делает множество сканов толщиной до 1 мм, на основании которых воссоздается трехмерная модель легких, сосудов, органов и костей грудной клетки в высоком разрешении. Таким образом после компьютерной обработки изображений ткани и органы можно исследовать в трех проекциях, эффект наложения теней от органов в случае с компьютерной томографией отсутствует.

Высокая четкость изображения при компьютерной томографии связана с техникой проведения диагностики и физическими свойствами излучения. Рентген обладает 20% коэффициентом ослабления, в то время как томография – коэффициентом 0,5%, а следовательно и более высокой разрешающей способностью.

И рентгенографию, и компьютерную томографию можно делать с контрастированием. Рентгенография или КТ легких с контрастом поможет визуализировать сосуды и опухоли. Однако первичная дифференциация новообразований на доброкачественные и онкогенные возможна только в рамках КТ, что также связано с качеством изображений.

Поскольку рентгенограмма грудной клетки в сущности представляет 1 снимок, а томограмм делают множество, то и излучение при КТ легких выше из-за многократной экспозиции. В среднем, за одну процедуру рентгена легких пациент получает 0,1 мЗв облучения, во время КТ легких – 2,5 мЗв. Однако эта доза ионизирующего излучения безопасна для пациента. В год допустимо делать КТ-сканирование 5 зон. Направляя на тот или иной рентгенографический метод обследования, врачи всегда руководствуются критерием целесообразности и безопасности пациента.

В специализированном центре КТ «Ами» процедура проходит на аппарате нового поколения Siemens Somatom go.Now со сниженной лучевой нагрузкой.

Учимся описывать рентген-снимки пазух носа

Описать рентген-снимки пазух носа при гайморите (воспалительное скопление жидкости) любой человек может самостоятельно, если изучит рентгеновские синдромы заболевания. Достаточно запомнить нормальную интенсивность просветлений, образованных лобными и верхнечелюстными пазухами носа, чтобы научиться определять на рентгенограмме гайморит или кисты (полостные образования, наполненные жидкостью).

Рентгенограмма придаточных пазух носа. Стрелками обозначены верхнечелюстные (гайморовы) и лобные пазухи

Читателю будет легко читать рентгенограмму, если он запомнит, что пазухи на ней имеют черный цвет. При патологических скоплениях жидкости появляются белые тени (см. рисунок).

Фрагмент рентгенограммы показывает, как выявлять двусторонний гайморит

Если сравнить рисунок 2 с предыдущим, можно обнаружить интенсивные затемнения (белого цвета) в проекции обеих верхнечелюстных пазух на фоне двустороннего гайморита. Они образованы скоплением жидкости.

Подведем итог: легко читать рентгеновские изображения легких, носа и даже зубов можно лишь после изучения рентгеноанатомии областей исследования в норме. Так советуют представители Ленинградской школы рентгенологов, и мы с ними согласны. Для определения на снимках переломов требуется практический опыт.

Прицельные рентгеновские снимки: определение, алгоритм проведения, преимущества

Прицельная рентгенография – это важный дополнительный метод диагностики заболеваний зубов. Для проведения рентгена такого типа применяется современное рентгеновское оборудование, называемое цифровым радиовизиографом.Этот аппарат создаёт плоскостное изображение – прицельный рентгеновский снимок, позволяющий получить данные о коронковой и корневой частях зуба, тканях, окружающих его с целью диагностики заболеваний для планирования и контроля лечения.
Перед началом проведения процедуры на пациента обязательно надевают специальный защитный фартук, предотвращающий попадание лучей на другие части тела и внутренние органы. Голова фиксируется в удобном положении, и врач направляет аппарат таким образом, чтобы рентгеновские лучи попали именно на исследуемый участок. Те элементы, которые подлежат изучению, закрываются специальной тонкой пластиной, чтобы обеспечить чёткость снимка.

Дентальная ренгенография имеет ряд преимуществ перед другими диагностическими методами. Высокое разрешение снимка, сделанного в клинике Dr. Edranov на современном оборудовании последнего поколения, позволяет увеличить необходимую область для лучшего осмотра. Полученные в электронном виде изображения удобно хранить в базе данных и отслеживать в динамике состояние зубов и мягких тканей, а также наблюдать за промежуточными результатами лечения.
Прицельные рентгеновские снимки получаются малых размеров и визуально могут «охватывать» всего 2-3 зуба. Для исследования более обширной области зубного ряда используют ОПТГ – ортопантомограмму (ГПС: Ортопантомография), позволяющую получить изображение всей зубочелюстной системы. Все чаще в высокоэффективной стоматологии врачи применяют КТ – компьютерную томографию (ГПС: Компьютерная томография), которая составляет объемную модель зубочелюстной системы, позволяя детально в 3D изучить все имеющиеся дефекты. Такой всеобъемлющий подход к диагностике, планированию лечения и его реализации позволяет специалистам Профессорской клиники Едранова увидеть всю клиническую картину целиком.

В каких случаях показана лучевая диагностика?

Ионизирующее излучение ежедневно используется в больницах и клиниках для проведения диагностических процедур визуализации. Обычно лучевая диагностика используется для назначения точного диагноза, выявления заболевания или травмы.

Назначить исследование вправе только квалифицированный врач. Однако существуют не только диагностические, но и профилактические рекомендации исследования. К примеру, женщинам старше сорока лет рекомендуется проходить профилактическую маммографию не реже, чем раз в два года. В учебных заведениях зачастую требуют ежегодно проходить флюорографию.

Не опасно ли делать КТ легких после рентгена?

Ионизирующее (рентгеновское) излучение не полезно для человека, а в избыточном количестве вызывает радиационный синдром и может стать «спусковым механизмом» для развития онкологических заболеваний у пациентов, предрасположенных к ним. Согласно действующим «Нормам радиационной безопасности» в год допустимо до 30-50 мВз излучения, но не следует забывать и о естественном радиационном фоне. КТ легких (около 2,5 мЗв) после рентгена (около 0,1 мЗв) безопасно, и такая прецизионная диагностика может спасти пациенту жизнь.

Однако, чтобы избежать дополнительной лучевой нагрузки, наиболее целесообразно сразу сделать КТ легких, не прибегая к рентгену.

Когда нужно и не нужно выполнять

Учитывая тот факт, что любые методы рентгеновского исследования – это лучевая нагрузка, для выполнения этих видов диагностики должны быть четкие обоснования и показания. Это справедливо как для взрослых, так и для детей.

Если это подозрение на пневмонию, туберкулезный процесс, абсцессы легкого, травмы грудной клетки, пороки развития, опухолевые процессы, требующие оперативного лечения – эти методы обоснованы и необходимы для постановки правильного диагноза и разработки наиболее оптимальной схемы лечения.

Нельзя проводить рентген и тем более томографию в профилактических целях, в тех случаях, когда диагноз можно определить без лучевых вмешательств.

Вынужденные диагностические дозы рентген облучения

Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.

Важно: современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека

Но все же попытаемся привести усредненные цифры доз, которые может получать пациент

Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:

  • цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
  • плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
  • рентгенография органов грудной полости: 0,15-0,4 мЗв.;
  • дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.

Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.

Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки  общая доза полученного облучения может составить от 2 до 3,5 мЗв.

Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.

Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.

Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.

Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.

ПроцедураЭффективная доза облученияСопоставимо с природным облучением, полученным за указанный промежуток времени
Рентгенография грудной клетки0,1 мЗв10 дней
Флюорография грудной клетки0,3 мЗв30 дней
Компьютерная томография органов брюшной полости и таза10 мЗв3 года
Компьютерная томография всего тела10 мЗв3 года
Внутривенная пиелография3 мЗв1 год
Рентгенография желудка и тонкого кишечника8 мЗв3 года
Рентгенография толстого кишечника6 мЗв2 года
Рентгенография позвоночника1,5 мЗв6 месяцев
Рентгенография костей рук или ног0,001 мЗвменее 1 дня
Компьютерная томография – голова2 мЗв8 месяцев
Компьютерная томография – позвоночник6 мЗв2 года
Миелография4 мЗв16 месяцев
Компьютерная томография – органы грудной клетки7 мЗв2 года
Микционная цистоуретрография5-10лет: 1,6 мЗв
Грудной ребенок: 0,8 мЗв
6 месяцев
3 месяца
Компьютерная томография – череп и околоносовые пазухи0,6 мЗв2 месяца
Денситометрия костей (определение плотности)0,001 мЗвменее 1 дня
Галактография0,7 мЗв3 месяца
Гистеросальпингография1 мЗв4 месяца
Маммография0,7 мЗв3 месяца

Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности

Некоторые люди ошибочно причисляют этот метод к рентгеновским.

Нормативы принятого закона о радиационной безопасности  допускают безопасную дозу, полученную человеком за 70 лет жизни до 70 мЗв.

Облучение при рентгене — риски, дозы, техника безопасности, видео:

Лотин Александр Владимирович, врач-рентгенолог

 85,898 total views,  5 views today

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий